АДРТехнология
      оборудование для сварки пластмасс          
и монтажа коммуникаций
Телефон +7-495-925-6150 Звоните: +7 495 150-0822
Телефон +7-495-925-6150 Звоните: +7 901 782-06-53
Адрес АДР-Технология Москва, ЮАО, м.Каширская,
ул. Котляковская, 7/8
Интернет-магазин ADR-TOOLS
Оборудование лучших производителей
для каждой технологии
Продукция



Ползучесть, время релаксации напряжений, минимальная длительная прочность, долговременная прочность, MRS

Минимальная длительная прочность

Ползучестью называют медленную пластическую (необратимую) деформацию изделия под действием созданного в материале напряжения. Строго говоря, способность к деформации под напряжением также называют ползучестью. Когда говорят о большей или меньшей скорости деформации под напряжением, также говорят о большей или меньшей ползучести.

К ползучести приводит напряжение любого рода – растяжение, сжатие, кручение или пр.

Не существует нижнего порога величины напряжения в материале, ниже которого изделие вообще не будет медленно деформироваться. Снижение напряжения приведет к снижению скорости деформации, но не к ее прекращению.

Ползучести в большей или меньшей мере подвержены все материалы – как аморфные, так и кристаллические и частично кристаллизованные. Микропроцессы, приводящие к ползучести у аморфных и у кристаллических веществ, различны. У аморфных веществ деформация под нагрузкой сродни вязкому течению термопластов.

У кристаллов ползучесть обусловлена, в основном, взаимным перемещением зон с идеальной кристаллической решеткой вдоль т.н. «линий дислокаций» – зон, в которых идеальность кристаллической решетки нарушена. Линии дислокации есть в любом кристалле.

Другой микропроцесс, характерный только для кристаллов – смещение слоев кристаллической решетки под действием напряжения – незначителен по сравнению с движением вдоль линий дислокаций.

В общем случае ползучесть у кристаллических веществ меньше, чем у аморфных. На примере полимеров – увеличение степени кристаллизации полимера заметно снижает скорость его деформации под действием напряжения.

Микропроцессы, описанные для аморфных и кристаллических веществ, при повышении температуры материала протекают быстрее. Таким образом, текучесть материала зависит от его химической природы, от степени кристаллизации и от температуры.

Для демонстрации ползучести и численного описания ее величины используют образец материала, деформированный на фиксированную величину ∆L. Образец сжимают или растягивают, создавая соответственно напряжение сжатия или растяжения, с возможностью измерения напряжения, и оставляют в зафиксированном виде на длительное время. Постепенная деформация образца приводит к снижению созданного напряжения во времени по экспоненциальному закону. Время, за которое напряжение снизится в e раз, называют «временем релаксации напряжений», присущим данному материалу.

Время релаксации напряжений довольно однозначно описывает ползучесть конкретного материала, но трудно применимо для практических расчетов.

В инженерных расчетах используют понятие «предела ползучести» материала – напряжение, которое за заданный период времени при заданной температуре приведет к заданной деформации образца. Условия определения предела ползучести в каждой отрасли свои. Например, при конструировании авиационных моторов период времени принимают равным 100-200 ч, а при проектировании паровых турбин атомных и тепловых электростанций – 100 000 ч.

Все напорные трубы из полимеров номинально рассчитаны на 50-летнюю эксплуатацию при заданном внутреннем давлении и при температуре 20°С. Условие успешной эксплуатации – отсутствие разрыва в течение заданного срока. Поэтому предел ползучести полимеров определяют не для какой-то заданной величины деформации, а для полного разрыва образца в течение 50 лет при постоянной температуре 20°С.

Для полимеров предел ползучести имеет особое название. В международном (английском) оригинале – Minimum required strength (MRS). В русской версии – «Минимальная длительная прочность» или «Долговременная прочность» полимера. Физический смысл – максимально допустимое статическое напряжение растяжения, которое можно создать в образце материала при постоянной температуре 20ºС, с тем чтобы образец, постепенно растягиваясь, гарантированно не успел порваться за 50 лет. Рассчитывается методом экстраполяции на 50 лет постепенного растяжения образца под действием растягивающей нагрузки в течение какого-то разумного периода времени – например, 3 месяца. Затем полученное значение допустимого напряжения растяжения округляется вниз до ближайшего ряда R10 предпочтительных чисел по ГОСТ 8032-84 (или ИСО 3).

Зная требуемое эксплуатационное давление трубопровода, диаметр трубы и минимальную длительную прочность материала, легко рассчитать минимально допустимую толщину стенки трубы. Затем к расчетной толщине стенки применяют «перестраховочный» коэффициент запаса прочности.

Значение долговременной прочности иногда используется в наименовании типа материала.

Например: ПЭ 63 имеет характеристику MRS, равную 6,3 МПа. Это обозначает, что при растягивающем статическом напряжении 63 кг/см2 и при постоянной температуре 20ºС образец из ПЭ 63 будет постепенно растягиваться и порвется не раньше, чем через 50 лет. Аналогичный смысл имеют наименования материалов ПЭ 80 и ПЭ 100.

Минимальная длительная прочность полимеров, используемых для производства труб, приводится в табл.1:

Таблица 1:

Материал

MRS, МПа

PE 63

6,3

PE 80

8,0

PE 100

10,0

PP-H

10,0

PP-B

8,0

PP-R

8,0*

РЕ-Х

8,0

РВ

12,5

PVC-U

25,0

PVC-C

25,0

* Современный рандом-сополимер пропилена PP-R производится с MRS=10,0 МПа.